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CC-1065 (1), a potent antitumor antibiotic discovered by 
Martin et al.,1 is exquisitely complementary to the minor groove 
of DNA.2 In addition to showing exceptionally high DNA-
binding affinity,13 1 alkylates the N-3 atom of adenine bases 
(Scheme 1) with high specificity for certain AT-rich se­
quences.4,5 A similar enzyme-like specificity has been observed 
for synthetic cyclopropylpyrroloindole (CPI) analogs6 and for 
related natural products7 and synthetic agents.8 In further 
analogy to enzyme—substrate reactions, the covalent transfor­
mation of 1 and related compounds is reversible under ap­
propriate conditions.9-1' It has been suggested that these 
reactions are accelerated by duplex DNA.1112 To date, however, 
few direct kinetic studies have been reported.13 

In contrast to I,3 2 and 3 have sufficient solubility in 
aqueous—organic solvent mixtures to permit kinetic measure­
ments of their solvolytic and nucleophilic addition reactions at 
low pH.14 They also have sufficient binding affinity to DNA, 
as well as alkylation specificity and biological potency,612 to 
allow a meaningful comparison to 1. Using spectroscopic 
methods, we have measured the rates of alkylation of synthetic 
adenine-containing duplex DNA polymers with 2 and 3 as a 
function of base pair concentration. Our data reflect an 
enormous rate acceleration of nucleophilic addition to the CPI 
moiety in the DNA minor groove, approaching rate accelerations 
at enzyme active sites. 

Compound 2 is insoluble in 10% (v/v) dimethylacetamide 
(DMA)/40 mM Tris-trichloroacetate buffer, pH 7.2. However, 
in the presence of a large excess of [poly(dA-dT)]2 the UV/vis 
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Scheme 1 

spectrum (Figure la) was virtually indistinguishable from that 
of 2 dissolved in 50% (v/v) ethanol/water.14 Thus DNA 
effectively "solubilized" 2. The immediate appearance of a 
strong induced circular dichroic spectrum when 2 was mixed 
with the DNA polymer (supplementary material) also supported 
rapid noncovalent complexation of the drug. First-order decay 
(fcobs = 1.1 x 10~3 s_1) of the long-wavelength UV band of 2 
produced the spectrum of the DNA adduct (Figure lb).15 The 
fcobs for the reaction of 2 with poly(dA)-poly(dT), 2 x 10"2 s"1, 
was more than an order of magnitude faster than that for [poly-
(dA-dT)]2. For both polymers, £obs was independent of the DNA 
concentration from 1 to 0.1 mM base pairs (supplementary 
material). This was consistent with the spectral indications that 
2 was in each case totally bound as a precovalent complex at 
the initial observation. 

In contrast, k0bs for the reaction of 3 with poly(dA)-poly(dT) 
did show dependence on DNA concentration in this range 
(Figure 2). The data fit the Michaelis-Menten equation, with 
Km = 0.4 mM, and fca = 4 x 10-3 s_1. These results are 
consistent with the kinetic model proposed for the reaction of 
CPIs with DNA, in which equilibrium formation of a preco­
valent complex is followed by a slower alkylation step.6 Under 
these conditions of temperature and pH, the alkylation step can 
be considered irreversible.9 

CPI + DNA =^= complex — adduct 

kobs = Jk1[DNAV(AT1n + [DNA]) 

Under conditions of saturation binding (>2 mM DNA, ^ s 
= fca), the observed rate constant for the reaction of 3 with poly-

(15) Reactions were started by adding the CPI in DMA to solutions of 
the DNA polymer (0.1—2.5 mM base pairs) in 40 mM Tris-trichloroacetate, 
1 mM Na2EDTA buffer containing 10% (v/v) of DMA, final measured pH 
7.0-7.2, at 25 0C. CPI concentrations ranged from 3 to 30 /M. Large 
excesses (base pairs:drug > 20:1) of DNA ensured pseudo-first-order 
behavior. Instrumental and data analysis methods were as described in ref 
14. Reproducibility of observed rate constants was generally within 20%. 
Some variability reflected small differences in the final measured pH in 
individual experiments. At pH < 7, &obs increased linearly with the hydrogen 
ion activity, with the slope dependent on ionic strength, the DNA polymer, 
and the drug (manuscript in preparation). Timed extractions of unreacted 2 
from the reaction mixture, as well as changes in the DNA-induced circular 
dichroic spectra (supplementary material), verified the rate constants 
obtained by UV/vis. Thermal depurination of the spent reaction mixtures 
as previously described (ref 9) confirmed the essentially quantitative 
conversion of 2 to its N-3 adenine adduct. No solvolysis products were 
detected. 
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Figure 1. UV/vis spectra of 26 ftM 2 and 1.2 mM base pairs of [poly-
(dA-dT)]2 in 10% (v/v) DMA/40 mM Tris-trichloroacetate, 1 mM Na2-
EDTA, pH 7.2, 25 0C, (a) 1 min after mixing and (b) 90 min later. 
Intermediate curves shown at 10 and 20 min. 

4 , . 

3 

'(A 

!= 2 

1 

0< . 1 
0 1 2 3 

(DNA], mM 

Figure 2. Observed first-order rate constants (ref 15) for the reaction 
of 3 with poly(dA)-poly (dT) as a function of base pair concentration. 
The curve was calculated from the Michaelis—Menten equation, with 
Km = 0.4 mM and t , = 4 x 10"3 s"1. 

(dA)-poly(dT) was only 5-fold lower than that for 2. At 100 
/uM. DNA, however, the difference in k0\,s between 2 and 3 grew 
to 30-fold. These data illustrate that at sufficiently low DNA 
concentrations, precovalent binding affinity differences can have 
a profound effect on relative rates of alkylation. Thus, alkylation 
kinetics offers a plausible explanation for the 25-fold difference 
in cytotoxic potency reported for 2 and 3.6 

On the other hand, the difference in k0bs for the reaction of 2 
with the alternating and homopolymers cannot be attributed to 
differences in Km, since in both cases 2 was completely 
complexed to the DNA. These data indicate that fca is sequence 
dependent, i.e., that dissimilar AT-rich minor groove environ­
ments can show significantly different stabilization of the 
transition state for CPI adduct formation. One component of 
this sequence difference might be the effective local proton 
concentration in the minor groove. Computational studies 
indicate an effective hydrogen ion concentration in the DNA 
minor groove that can be several orders of magnitude higher 
than in the bulk solvent.16 

The formation of CPI-DNA adducts is formally analogous 
to the addition of neutral nucleophiles across the activated 
cyclopropyl ring of CPI. Hence, aqueous solvolysis of CPI is 
a reasonable standard reaction for rate comparison.17 Extrapola­
tion of CPI solvolytic data14 to pH 7.2 gives an apparent second-
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we have noted differences in the buffering capacity of the two polymers 
used in our studies. 
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order rate constant for addition of water to 2 or 3 of 2 x 10 - 1 0 

M - 1 S-1.18 For the reaction of 3 and poly(dA)-poly(dT) in 10% 
(v/v) DMA/water at this pH, the apparent second-order rate 
constant, kJKm, is 8 M - 1 s_1. This is a rate difference of greater 
than 1010! For 2, kJKm > 400 M"1 s"1, indicating a rate 
difference of more than 1012! Duplex DNA, therefore, can be 
as effective as many enzymes in accelerating chemical trans­
formations. Furthermore, like enzymes, DNA appears to 
achieve this acceleration both by uniform binding (of the ground 
state and transition state) and by selective transition-state 
stabilization.19 Because the DNA itself reacts with the CPI 
which it activates, to the detriment of its normal function,20 the 
process is directly analogous to mechanism-based inactivation 
of enzymes.21 

DNA catalysis of carcinogenic diol epoxide hydrolysis and 
platinum adduct formation has been reported,22 and its accelera­
tion of nitrogen mustard and nitrosourea alkylation has also been 
proposed.23 However, the magnitudes of these effects are 
modest. The complex molecular architecture of 1 and related 
antibiotics, in contrast, has been honed by natural selection,24 

achieving an astounding degree of specificity and efficiency. 
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